Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

G. N. Anilkumar, ${ }^{\text {a }}$ M. K. Kokila, ${ }^{\text {b }}$ * Puttaraja, ${ }^{\text {b }}$ S. Mohan ${ }^{\text {c }}$ and K. S. Majunath Shetty ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Physics, M. S. Ramaiah College of Arts, Science and Commerce, MSRIT Post, Bangalore 560 054, Karnataka, India,
${ }^{\mathbf{b}}$ Department of Physics, Bangalore University, Bangalore 560 056, Karnataka, India, ${ }^{\text {c PES }}$ College of Pharmacy, Hanumanthanagar, Bangalore 560 050, Karnataka, India, and ${ }^{d}$ M. S. Ramaiah Clinical and Bioavailability/Bioequivalence Centre, MSRIT Post, Bangalore 560 054, Karnataka, India

Correspondence e-mail:
prmkk_group@rediffmail.com

N-(3-Chlorophenyl)-2-\{[(1E)-(4-methylphenyl)-methylene]amino\}-4,5,6,7-tetrahydro-1-benzo-thiophene-3-carboxamide

The crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OS}$, is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction.

Comment

The title compound, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OS}$, (I), belongs to a series of 3-arylcarboxamides. The majority of Schiff bases (Csaszar \& Morvay, 1983; Lakshmi et al., 1985; Cohen et al., 1977) and their thiophene derivatives (El-Maghraby et al., 1984; Dzhurayev et al., 1992; Gewald et al., 1966) possess antibacterial, antitubercular and antifungal activities. Sulfur-containing Schiff bases are particularly effective (Mohan \& Saravanan, 2003). In view of the pharmacological and biological activities of this class of compounds, the structure analysis of (I) has been undertaken.

(I)

The molecular structure of (I) is shown in Fig. 1, and selected geometrical parameters are given in Table 1. The

Figure 1
A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds; H atoms not involved in hydrogen bonding have been omitted.

Received 29 July 2005
Accepted 2 August 2005
Online 12 August 2005

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.124$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
thiophene ring is planar. The six-membered cyclohexane ring adopts a half-chair conformation, with the puckering parameters $q_{2}=0.383(3) \AA, \varphi_{2}=-88.4(4)^{\circ}$ and $\theta_{2}=128.1(3)^{\circ}$ (Cremer \& Pople, 1975; Spek, 2003).

The dihedral angle between the p-toluidine group (atoms $\mathrm{C} 17-\mathrm{C} 23 / \mathrm{C} 21 / \mathrm{C} 22$) and the thiophene ring is 10.2 (1) ${ }^{\circ}$. The $o-$ chlorophenyl ring ($\mathrm{C} 11-\mathrm{C} 16 / \mathrm{Cl} 1$) makes a dihedral angle of 4.8 (3) ${ }^{\circ}$ with the thiophene ring. The $\mathrm{C} 3-\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11$ [178.53 (17) ${ }^{\circ}$] and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 17$ torsion angles [$\left.-176.78(18)^{\circ}\right]$ show the anti conformation of the two groups about the $\mathrm{C} 10-\mathrm{N} 2$ and $\mathrm{N} 1-\mathrm{C} 1$ bonds.

The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form pseudo-six-membered rings, and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond forms a pseudo-five-membered ring, thus locking the molecular conformation and eliminating conformational flexibility. In the crystal structure, molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming along the c axis.

Experimental

The title compound, (I), was synthesized using the Gewald reaction (Gewald et al., 1966). m-Chlorophenyl 2-cyanoacetamide (0.04 mol) was refluxed with cyclohexanone $(0.98 \mathrm{~g}, 0.01 \mathrm{~mol})$ in the presence of ammonium acetate $(1.00 \mathrm{~g})$ and glacial acetic acid (2 ml) in benzene. This mixture was treated with sulfur ($1.28 \mathrm{~g}, 0.04 \mathrm{~mol}$), dimethylamine $(4 \mathrm{ml})$ and ethanol at 323 K . The product was treated with 4methyl benzaldehyde in an equimolar ratio in the presence of 2 propanol and a catalytic amount of glacial acetic acid under microwave irradiation, which yielded (I). This was purified and crystallized from N, N-dimethylformamide and ethanol (1:2) by slow evaporation.

Crystal data

```
C23}\mp@subsup{\textrm{H}}{21}{}\mp@subsup{\textrm{ClN}}{2}{}\textrm{OS
Mr}=408.9
Monoclinic, P2 1/n
a=7.828 (3) \AA
b=19.652 (6) \AA
c=13.086 (4) \AA
\beta=98.854 (5) }\mp@subsup{}{}{\circ
V=1989.2 (11) A %
Z=4
```


Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick 1996$)$
$T_{\min }=0.915, T_{\max }=0.945$
19713 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.09$
3711 reflections
254 parameters
H -atom parameters constrained
> $D_{x}=1.365 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 470 reflections
> $\theta=1.2-25.5^{\circ}$
> $\mu=0.31 \mathrm{~mm}^{-1}$
> $T=291$ (2) K
> Block, yellow
> $0.34 \times 0.24 \times 0.21 \mathrm{~mm}$

3711 independent reflections
3209 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-23 \rightarrow 23$
$l=-15 \rightarrow 15$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0676 P)^{2}\right)
$$

Figure 2
Packing diagram of (I); $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C8	$1.719(2)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.359(2)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.7365(19)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.402(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.278(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.358(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.392(2)$		
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11$	$128.59(16)$	$\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 18$	$118.04(19)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$126.20(16)$	$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$117.8(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	$126.21(16)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 17$	$-176.78(18)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 3$	$178.53(17)$

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	0.86	2.04	$2.772(3)$	143
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1$	0.93	2.53	$2.997(2)$	112
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$	0.97	2.49	$2.830(3)$	100
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1$	0.93	2.28	$2.868(3)$	121
$\mathrm{C}_{1} 14-\mathrm{H} 14 \cdots \mathrm{O}{ }^{\mathrm{i}}$	0.93	2.46	$3.363(3)$	163
Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$				

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

H atoms were positioned geometrically $[\mathrm{N}-\mathrm{H}=0.86 \AA$, and $\mathrm{C}-$ $\mathrm{H}=0.93(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ and $\left.0.96 \AA\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 (1.5 for methyl) times $U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. A rotating group model was used for the methyl group.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and Department of Science and Technology, India, for data collection on the CCD facility, and

Bangalore University. GNA thanks the management, Chief Executive and Principal of M. S. Ramaiah College of Arts, Science and Commerce for encouragement and support.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (1998). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Cohen, V. I., Rist, N. \& Duponchel, C. (1977). J. Pharm. Sci. 66, 1332-1334. Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Csaszar, J. \& Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.

Dzhurayev, A. D., Karimkulov, K. M., Makshsumov, A. G. \& Amanov, N. (1992). Khim. Farm. Zh. 26, 73-75.

El-Maghraby, A. A., Haroun, B. \& Mohamed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327-336.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gewald K., Schinke, E. \& Botcher, H. (1966). Chem. Ber. 99, 94-100.
Lakshmi, V. V., Sridhar, P. \& Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327336.

Mohan, S. \& Saravanan, J. (2003). Asian J. Chem. 15, 67-70.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

